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Abstract

This paper develops a dynamic monetary model to study the (in)stability of the

fractional reserve banking system. The model shows that the fractional reserve

banking system can endanger stability in that equilibrium is more prone to ex-

hibit endogenous cyclic, chaotic, and stochastic dynamics under lower reserve

requirements, although it can increase consumption in the steady-state. Intro-

ducing endogenous unsecured credit to the baseline model does not change the

main results. The calibrated exercise suggests that this channel could be another

source of economic fluctuations. This paper also provides empirical evidence that

is consistent with the prediction of the model.
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Motivated partly by a desire to avoid such [excessive] price-level fluctu-

ations ..., quantity theorists have advocated legal restrictions on private

intermediation. ... Thus, for example, Friedman (1959, p. 21) ... has ad-

vocated 100 percent reserves against bank liabilities called demand deposit.

Sargent and Wallace (1982)

1 Introduction

There have been claims that fractional reserve banking is an important cause of boom-

bust cycles, based on the notion that banks create excess credit under fractional re-

serve banking. (e.g., Fisher, 1935; Von Mises, 1953; Minsky, 1957; Minsky, 1970). For

instance, Fisher (1935) views fractional reserve banking as one of several important

factors in explaining economic fluctuations. Others believe that this is a primary cause

of boom-bust cycles. According to Von Mises (1953), the overexpansion of bank credit

as a result of fractional reserve banking is the root cause of business cycles. Minsky

(1970) claims that economic booms and structural characteristics of the financial sys-

tem, such as fractional reserve banking, can result in an economic collapse even when

fundamentals remain unchanged.

This idea leads to policy debates on fractional reserve banking. Earlier examples

include Peel’s Banking Act of 1844 and the Chicago plan of banking reform with a

100% reserve requirement proposed by Irving Fisher, Paul Douglas, and others in 1939.

Later, Friedman (1959) supported this banking reform, whereas Becker (1956) took the

opposite position of supporting free banking with 0% reserve requirement.1 Recently

in 2018, Switzerland had a referendum of 100% reserve banking, which was rejected

by 75.72% of the voters. The referendum aimed at making money safe from crisis by

constructing full-reserve banking.2 Whereas the debate on whether a fractional reserve

banking system is inherently unstable has been an important policy discussion since a

long time ago, the debate has never stopped.

This paper examines the instability of fractional banking by answering the following

questions: (i) Can fractional reserve banking be inherently volatile even if we shut

1Sargent (2011) provides a novel review of the historical debates between narrow banking and free
banking as tensions between stability versus efficiency.

2The official title of the referendum was the Swiss federal popular initiative “for crisis-safe money:
money creation by the National Bank only! (Sovereign Money Initiative)” and also titled as “debt-free
money.”
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down the stochastic component of the economy? (ii) If so, under what condition

can fractional reserve banking generate endogenous cycles without the presence of

exogenous shocks and changes in fundamentals? To assess the claim that fractional

reserve banking causes business cycles, this paper constructs a model of money and

banking that captures the role of fractional reserve banking.

In the model, each agent faces an idiosyncratic liquidity shock. Banks accept and

issue deposits and extend loans to provide risk-sharing among the depositors. The

bank makes loans by creating deposit money, and its lending deposit money creation

is constrained by the reserve requirement. At equilibrium, the real balance of money

is determined by two factors: storage value and liquidity premium. The storage value

increases with the future value of money. However, the liquidity premium, which is

the marginal value of money’s liquidity function, decreases as money becomes more

abundant. When the liquidity premium dominates the storage value, the economy

can exhibit endogenous fluctuations. Fractional reserve banking amplifies the liquidity

premium because it allows the bank to create inside money through lending. Due to

this amplified liquidity premium, the fractional reserve banking system is more prone

to endogenous cycles.

In the baseline model, lowering the reserve requirement increases consumption in

the steady state. However, lowering the reserve requirements can induce two-period

cycles as well as three-period cycles, which implies the existence of periodic cycles of

all order and chaotic dynamics. This also implies it can induce sunspot cycles. This

result holds in the extended model with unsecured credit. The model also can deliver

a self-fulfilling bubble burst. It is worth noting that the full reserve requirement does

not necessarily exclude the possibility of endogenous cycles. However, the economy

will be more susceptible to cycles with lower reserve requirement.3

This paper departs from previous works in two ways. First, in contrast to the

previous works on banking instability, which mostly focus on bank runs following the

seminal model by Diamond and Dybvig (1983), this paper focuses on the volatility

of real balances of money. It is another important focal point of banking instability

because recurring boom-bust cycles associated with banking are probably be more

prevalent than bank runs. Second, the approach here differs from a traditional approach

to economic fluctuations with financial frictions. To understand economic fluctuations,

there are two major points of view. The first one is that economic fluctuations are

3Gu, Monnet, Nosal and Wright (2023) show that introducing banks to the economy could induce
instability in various settings which is in line with this result.
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driven by exogenous shocks disturbing the dynamic system, and the effects of exogenous

shocks shrink over time as the system goes back to its balanced path or steady-state.

The second one is that they instead reflect an endogenous mechanism that produces

boom-bust cycles. While there has been a lot of work on the role of financial friction

in the business cycles including Kiyotaki and Moore (1997), Bernanke, Gertler and

Gilchrist (1999), and Gertler and Karadi (2011), most of them focused on the first

approach, in which all economic fluctuations are caused by exogenous shocks and the

financial sectors only serve as an amplifier. This paper, however, takes the second

approach and focuses on whether the endogenous cycles arise in the absence of the

stochastic components of the economy.4

To evaluate the main prediction from the theory that fractional reserve banking

induces excess volatility, I test the relationship between the required reserves ratio

and the volatilty in real balance using cointegrating regression. A significant negative

relationship between the two variables are found, and the results are robust to differ-

ent measures of inflation and different frequency of time series. Both theoretical and

empirical evidence indicate a link between the reserve requirement and the (in)stability.

Related Literature This paper builds on Berentsen, Camera and Waller (2007), who

introduce financial intermediaries with enforcement technology to Lagos and Wright

(2005) framework. The approach to introduce unsecured credit to the monetary econ-

omy is related to Lotz and Zhang (2016) and Gu, Mattesini and Wright (2016) which

are based on the earlier work by Kehoe and Levine (1993).

This paper is related to the large literature on fractional reserve banking. Freeman

and Huffman (1991) and Freeman and Kydland (2000) develop general equilibrium

models that explicitly capture the role of fractional reserve banking. Using those mod-

els, they explain the observed relationships between key macroeconomic variables over

business cycles. Chari and Phelan (2014) study an economy where private agents have

incentives to establish fractional reserve banking as an alternative payment system.

This alternative system is inherently fragile because it is susceptible to socially costly

bank runs. They study the conditions under which the social benefits of fractional

reserve banking can exceed its social costs which crucially depend on communication

4The view that macroeconomic fluctuations reflect strong internal propagation mechanisms is not
new. This perspective dates back to early contributions in economics, including Le Corbeiller (1933)’s
work published in the first volume of Econometrica, as well as subsequent works such as Kalecki (1937)
and Kaldor (1940).
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technologies. For recent work, Sanches (2016) and Wipf (2020) studies the welfare

implications of fractional reserve banking in a New Monetarist economy. Wipf (2020)

studies a model of imperfect competition and identifies the conditions under which frac-

tional reserve banking can be welfare-improving compared to narrow banking. Sanches

(2016) incentive-feasible arrangements within the banking sector that preserves the

safety of bank liabilities as a store of value but also achieves a better allocation of

resources via investment opportunities. Andolfatto, Berentsen and Martin (2020) in-

tegrate Diamond (1997) into Lagos and Wright (2005) to provide a model in which

fractional reserve banking emerges endogenously and a central bank can prevent bank

panic as a lender of last resort. Whereas many previous work on instability focuses on

bank runs or societal value at the steady state, this paper studies a different type of

instability in the sense that fractional reserve banking induces endogenous monetary

cycles.

This paper is also related to the large literature on endogenous fluctuations, chaotic

dynamics, and indeterminacy that have been surveyed by Brock (1988), Baumol and

Benhabib (1989), Boldrin and Woodford (1990), Scheinkman and Woodford (1994) and

Benhabib and Farmer (1999). For a model of bilateral trade, Gu, Mattesini, Monnet

and Wright (2013) show that credit markets can be susceptible to endogenous fluctua-

tions due to limited commitment. Using a continuous-time New Monetarist economy,

Rocheteau and Wang (2023) show that asset liquidity can be a source of price volatil-

ity when assets have a non-positive intrinsic value. Altermatt, Iwasaki and Wright

(2023) study economies with multiple liquid assets and show that liquidity considera-

tions could imply endogenous fluctuations as self-fulfilling prophecies. Gu et al. (2023)

show that introducing financial intermediaries to an economy can engender instability

in the sense that endogenous cycles are more likely to emerge in the presence of finan-

cial intermediaries. They demonstrate this in four distinct setups that capture various

functions of banking. The model in this paper is closely related to that of Gu et al.

(2023) in the sense that both papers study the role of banking in instability. However,

this paper goes further by focusing on the fractional reserve banking system. One focal

point is that, rather than treating banks as mere intermediaries, in this paper, the bank

creates deposit money (inside money) by making loans through the fractional reserve

banking. Furthermore, this paper establishes exact thresholds of reserve requirements

under which the equilibrium can exhibit endogenous cycles and chaotic dynamics.
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The rest of the paper is organized as follows. Section 2 constructs the baseline

search-theoretic monetary model. Section 3 provides main results. Section 4 introduces

unsecured credit. Section 5 calibrates the model to quantify the theory. Section 6

discusses the empirical evaluation of the model’s prediction. Section 7 concludes.

2 Model

The model is based on Lagos and Wright (2005) with banking as in Berentsen et al.

(2007). Time is discrete and infinite. In each period, three markets convene sequen-

tially. First, a centralized financial market (FM), followed by a decentralized goods

market (DM), and finally a centralized goods market (CM). The FM and CM are fric-

tionless. The DM is subject to search frictions, anonymity, and limited commitment.

Therefore, a medium of exchange is needed to execute trades.

There is a continuum of agents who produce and consume perishable goods. At the

beginning of the FM, a preference shock is realized: With probability σ, an agent will

be a buyer in the following DM and with probability 1 − σ, she will be a seller. The

buyers and the sellers randomly meet and trade bilaterally in the DM. Agents discount

their utility each period by β. Within-period utility is represented by

U = U(X)−H + u(q)− c(q),

where X is the CM consumption, H is the CM disutility from production, and q is the

DM consumption. As standard U ′, u′, c′ > 0, U ′′, u′′ < 0, c′′ ≥ 0, and u(0) = c(0) = 0.

The CM consumption good X is produced one-for-one with H, implying the real wage

is 1. The efficient consumption in CM and DM is X∗ and q∗ that solve U ′(X∗) = 1

and u′(q∗) = c′(q∗), respectively.

There is a representative bank that accepts and issues deposits and lends loans in

the FM. In the FM, an agent can borrow money from the bank with a promise to

repay the money in the subsequent CM at a nominal lending rate il. There are two

kinds of deposits: demand deposits and saving deposits. The agent can deposit her

fiat money into the bank’s savings deposit and receive money in the subsequent CM

at a nominal deposit rate. The agent can also hold her balance in a demand deposit.

The demand deposit does not pay interest, while the interest rate on saving deposits

is is. In addition to that, the demand deposit can be used as a means of payment in

DM trade, whereas the savings deposit cannot. When the bank lends loans, it creates
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Demand Deposit (d)
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Reserves (r)

Loan (ℓ)
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χ < 1, d = r
χ

χ = 1, d = r

Figure 1: Bank’s Balance Sheet: fractional reserve banking vs. full reserve banking

demand deposits, and the bank’s issuance of demand deposits is subject to a reserve

requirement, χ. Figure 1 illustrates the bank’s balance sheet identity given the reserve

requirement. The banking market is perfectly competitive, and the bank can enforce

the repayment of loans at no cost. Lastly, there is a central bank that controls the fiat

money supply Mt. Let γ be the growth rate of the fiat money stock. Changes in the

fiat money supply are accomplished by lump-sum transfers if γ > 0 and by lump-sum

taxes if γ < 0.

2.1 Agent’s Problem

Let Wt, Gt, and Vt denote the agent’s value function in the CM, FM, and DM, re-

spectively, in period t. There are two payment instruments for the DM transaction:

fiat money and demand deposit. However, buyers and sellers do not discriminate be-

tween these instruments in the DM transaction because agents treat them as the same

’money.’ The agent’s state variables in the CM are at, st, and ℓt, where at = mt + dt,

st is a saving deposit, ℓt is a loan borrowed from the bank, mt is fiat money (outside

money) issued by the central bank, and dt is a demand deposit (inside money) issued

by the bank, The state variable at represents the agent’s nominal balance of liquid

assets, which can be used for transactions in the DM. I will allow the agents to use

unsecured credit as a means of payment in the next section. An agent entering the CM
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with nominal balance at, saving deposit st, and loan ℓt solves the following problem:

Wt(at, st, ℓt) = max
Xt,Ht,m̂t+1

U(Xt)−Ht + βGt+1(m̂t+1)

s.t. ϕtm̂t+1 +Xt =Ht + Tt + ϕtat + (1 + is,t)ϕtst − (1 + il,t)ϕtℓt,
(1)

where Tt is the lump-sum transfer (or tax if it is negative), is,t is the savings deposit

interest rate, il,t is the loan interest rate, ϕt is the price of money in terms of the CM

goods, and m̂t+1 is the money balance carried to the FM where banks take deposits

and makes loans. The first-order conditions (FOCs) result in Xt = X∗ and

ϕt = βG′
t+1(m̂t+1), (2)

where G′
t+1(m̂t+1) is the marginal value of an additional unit of money taken into the

FM of period t+ 1. The envelope conditions are

∂Wt

∂at
= ϕt,

∂Wt

∂st
= ϕt(1 + is,t),

∂Wt

∂ℓt
= −ϕt(1 + il,t),

implying Wt is linear in mt, st, and ℓt.

The value function of an agent at the beginning of FM is

Gt(m) = σGb,t(m) + (1− σ)Gs,t(m), (3)

where Gj∈{b,s},t is the value function of type j agent in the FM. Agents choose their

deposit balances dj, sj and loan ℓj based on the realization of their types in the following

DM and they can acquire demand deposits by borrowing loans from the bank.

The value function Gj,t can be written as

Gj,t(m) = max
dj,t,sj,t,ℓj,t

Vj,t(m+ dj,t − sj,t, sj,t, ℓj,t)

s.t. sj,t ≤ m, and dj,t = ℓj,t

(4)

where Vj,t is the value function of type j agent in the DM. The FOCs are

∂Vj,t

∂ℓj,t
≤ 0 (5)

∂Vj,t

∂sj,t
− λs ≤ 0 (6)
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where λs is the Lagrange multiplier for sj,t ≤ m.

The terms of trade in the DM are determined by an abstract mechanism that is

studied in Gu and Wright (2016). The buyer must pay p = v(q) to the seller to get q

where v(q) is some payment function satisfying v′(q) > 0 and v(0) = 0. As shown in

Gu and Wright (2016), if the trading protocol satisfies four common axioms, then the

terms of trade can be written in the following form.

p =

{
z if z < p∗

p∗ if z ≥ p∗
q =

{
v−1(z) if z < p∗

q∗ if z ≥ p∗,
(7)

where p∗ is the payment required to get efficient consumption q∗, and z is the total

liquidity, (m− s+ d)ϕ, held by the buyer. Many standard mechanisms, such as Kalai

and generalized Nash bargaining, are consistent with this specification.

With probability α, a buyer meets a seller in the DM while a seller meets a buyer

with probability αs. Since the CM value function is linear, the DM value function for

the buyer can be written as

Vb,t(mt + db,t − sb,t, sb,t, ℓb,t) = α[u(qt)− pt] +W (mt + db,t − sb,t, sb,t, ℓb,t), (8)

where pt ≤ (mt − sb,t + db,t)ϕt. Assuming interior solution, differentiating Vb,t yields

∂Vb,t

∂m
=

∂Vb,t

∂d
= ϕt[αλ(qt)+1],

∂Vb,t

∂s
= ϕt[−αλ(qt)+is,t],

∂Vb,t

∂ℓ
= ϕt[αλ(qt)−il,t],

where λ(q) = u′(q)/v′(q) − 1 if p∗ > z and λ(q) = 0 if z ≥ p∗. Combining the buyer’s

FOCs in the FM and the derivatives of Vb yields

ϕis,t − ϕαλ(qt)− λs ≤ 0, “ = ”0 iff sb,t > 0 (9)

−ϕil,t + ϕαλ(q) ≤ 0, “ = ”0 iff ℓb,t > 0. (10)

A seller’s DM value function is

Vs,t(mt + ds,t − ss,t, ss,t, ℓs,t) = αs[pt − c(qt)] +Wt(mt + ds,t − ss,t, ss,t, ℓs,t). (11)

where ds,t = ℓs,t. Differentiating Vs,t after substituting the constraint yields

∂Vs,t

∂mt

=
∂Vs,t

∂dt
= ϕt,

∂Vs,t

∂st
= ϕtis,t,

∂Vs,t

∂ℓt
= −ϕtil,t.
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Similar to the buyer’s case, combining the seller’s FOCs in the FM and the first-order

derivatives of Vs,t yields

ϕtis,t − λs ≤ 0, “ = ”0 iff ss,t > 0 (12)

−ϕtil,t ≤ 0, “ = ”0 iff ℓs,t > 0. (13)

One can show that buyers do not deposit into savings deposits and sellers always

deposit into savings deposits, whereas buyers always borrow loans, but sellers do not.

This is because the buyer needs liquidity to trade for q in the DM but the seller does

not. Formally, for m > 0, we have ∂Vs,t/∂sb,t < ∂Vs,t/∂ss,t = 0 and ∂Vs,t/∂ℓs,t <

∂Vb,t/∂ℓb,t = 0 because

0 =

∂Vs,t/∂ss,t︷ ︸︸ ︷
is,t − λd/ϕt >

∂Vb,t/∂sb,t︷ ︸︸ ︷
is,t − λs/ϕt − αλ(qt) (14)

0 = −ϕtil,t + ϕtαλ(qt)︸ ︷︷ ︸
∂Vb,t/∂ℓb,t

> −ϕtil,t︸ ︷︷ ︸
∂Vs,t/∂ℓs,t

(15)

implying il,t = αλ(qt), ss,t = m, sb,t = 0, ℓs,t = 0, and ℓb,t > 0 as long as λ(qt) > 0.

Using the above results, we can rewrite the value functions in the FM as follows:

Gb,t(mt) = α[u(qt)− pt] +W (mt + db,t, 0, ℓb,t) (16)

Gs,t(mt) = αs[pt − c(qt)] +W (0,mt, 0) (17)

where qt = v−1(pt), db,t = ℓb,t and pt = min{p∗, (mt + db,t)ϕt}. Take derivative of

Gj,t(mt) with respect to mt to get

G′
b,t(mt) = ϕt + ϕtαλ(qt) (18)

G′
s,t(mt) = ϕt + ϕtis,t. (19)

Since G′
t(mt) = σG′

b,t(mt) + (1− σ)G′
s,t(mt), we have the following:

G′
t(mt) = ϕtσ[1 + αλ(qt)] + ϕt(1− σ) (1 + is,t) . (20)
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Combine (2) and (20) to get the Euler equation

ϕt =

{
ϕt+1β [σ {1 + αλ(qt+1)}+ (1− σ)(1 + is,t+1)] if zt+1 < p∗

ϕt+1β if zt+1 ≥ p∗,
(21)

where qt+1 = v−1(zt+1) and zt+1 = (mt+1 + db,t+1)ϕt+1

2.2 Bank’s Problem and Equilibrium

A representative bank accepts saving deposits st, issues demand deposits dt, and makes

loans ℓt. The bank is required to hold reserves equal to χdt. The bank pays a nomi-

nal interest rate of is,t to depositors for their savings deposits, while borrowers must

repay their loans with a nominal interest rate of il,t. Demand deposits do not pay

interest. The central bank sets the reserve requirement χ. Given these conditions, the

representative bank solves the following profit maximization problem.

max
rt,dt,ℓt,st

(1 + il,t)ℓt + rt − dt − (1 + is,t)st

s.t. ℓt + rt = dt + st, dt = ℓt and rt ≥ χdt

(22)

In the first constraint, the balance sheet identity, the left-hand side represents assets,

which include reserves and loans, while the right-hand side represents liabilities, which

include demand deposits and saving deposits. The second constraint simply states that

banks create demand deposits by making loans, and the last constraint is the reserve

requirement constraint. By substituting the two constraints, the bank’s problem can

be written as:

max
ℓt,rt

(1 + il,t)ℓt + rt − ℓt − (1 + is,t)rt s.t. rt ≥ χℓt (23)

The FOCs for the bank’s problem are

0 = il,t − λχχ (24)

0 = −is,t + λχ (25)

With the binding reserve requirement constraint, we have

il,t = χis,t. (26)
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Given the bank’s problem and the agent’s problem, we can define an equilibrium

as follows:

Definition 1. Given (γ, χ), an equilibrium consists of sequences of prices {ϕt, il,t, is,t}∞t=0,
quantities {mt, ℓb,t, ℓs,t, db,t, ds,t, sb,t, ss,t}∞t=0, and allocations {qt, Xt}∞t=0 satisfying the
following:

• Agents solve CM, FM and DM problems: (1) and (4)

• The terms of trade in the DM satisfy (7), (8) and (11)

• A representative bank solves its profit maximization problem: (22)

• Markets clear in every period:

1. Deposit Markets: σdb,t + (1− σ)ds,t = dt and σsb,t + (1− σ)ss,t = st

2. Loan Market: σℓb,t + (1− σ)ℓs,t = ℓt

3. Money Market: mt = Mt

• Transversality condition: limt→∞ βtϕtmt = 0

• It is a monetary equilibrium if ϕtMt > 0

The next step is to characterize the equilibrium. Given the agents’ and the bank’s

problem with the binding reserve requirement constraint, we have ℓb,t = db,t = (1 −
σ)mt/(σχ). Combine equations (10), (21), and (26), and use the equilibrium condition

mt+1 = Mt+1 to get

ϕt =


ϕt+1β

[
1− σ + σχ

χ
αλ ◦ v−1(zt+1) + 1

]
if zt+1 < p∗

ϕt+1β if zt+1 ≥ p∗,

(27)

where zt+1 = ϕt+1Mt+1(1 − σ + σχ)/σχ. Then multiplying both sides of (27) by

Mt(1 − σ + σχ)/σχ allows us to reduce the equilibrium condition to one difference

equation of real balances z:

zt = f(zt+1) ≡
zt+1

1 + i

[
1− σ + σχ

χ
αL(zt+1) + 1

]
, (28)

where (1+ i) ≡ γ/β and L(z) ≡ λ ◦ v−1(z) is the liquidity premium.5 When zt+1 ≥ p∗,

qt+1 = q∗ because the buyer has sufficient liquidity to buy q∗. In this case, the liquidity

is abundant. When zt+1 < p∗, qt+1 = v−1(zt+1) < q∗ because the buyer does not have

enough liquidity to buy q∗. In this case, the liquidity is scarce.

5In the stationary equilibrium, i = γ/β − 1 is the nominal interest rate.
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Figure 2: Monetary Equilibrium

3 Results

This section establishes key results. Before starting a discussion on dynamics, consider

stationary equilibria which are defined as fixed points that satisfy z = f(z). There

always exists a non-monetary equilibrium with z = 0. A unique solution of monetary

stationary equilibrium zs > 0 exists and solves

χi = (1− σ + σχ)αL(zs) (29)

when i < ῑ where ῑ = α(1 − σ + σχ)L(0)/χ. Nash and Kalai bargaining provide

simple examples for ῑ. Under the Inada condition u′(0) = ∞, with Kalai bargaining,

ῑ = θα(1 − σ + σχ)/χ(1 − θ) where θ is the buyer’s bargaining power. With Nash

bargaining, we have ῑ = ∞. In the remaining sections of this paper, I focus on the

monetary equilibrium where money is valued ϕt > 0.

Since L′(z) < 0 and v′(q) > 0 (see Gu and Wright, 2016), the following result holds:

Proposition 1. In the stationary equilibrium, lowering i or lowering χ increases q.

Proof. See Appendix A.

Figure 2a plots z against i. It shows downward-sloping money demand in the

stationary equilibrium given the reserve requirement. Lowering the reserve requirement

increases z because it allows a bank to create more liquidity in the economy which

increases q as well.
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Now we will examine the dynamics of monetary equilibrium where money is val-

ued each period. The dynamics of monetary equilibrium are characterized by f(zt+1)

from equation (28). The first term, zt+1/(1 + i) on the right-hand side, reflects the

store of value, which is monotonically increasing in zt+1. The second term (1 − σ +

σχ)αL(zt+1)/χ + 1, reflecting the liquidity premium, is decreasing in zt+1. Because

f ′(zt+1) depends on both terms, f(zt+1) is nonmonotone in general. Figure 2b provides

an example. In this example, as the reserve requirement decreases, the equation (28)

is more likely to have the backward bending feature. Lowering the reserve requirement

amplifies the liquidity premium, as it enables banks to create more liquidity through

lending. This amplification of liquidity enhances the backward-bending feature, poten-

tially leading to endogenous cycles.

The standard treatment for showing the existence of an endogenous cycle is f ′(zs) <

−1 (see Azariadis, 1993). In this case, the economy can exhibit a two-period cycle

with z1 < zs < z2 which can be either z2 < p∗ or z2 ≥ p∗. However, without further

assumptions, we cannot determine the conditions under which this can occur. For

illustration, let’s take the derivative of (21) with respect to zt+1 and evaluate it at

zt+1 = zs. We obtain the following expression:

f ′(zs) =
1

1 + i

[
α(1− σ + σχ)

χ
{L′(zs)zs + L(zs)}+ 1

]
(30)

As L′(zs) is not explicitly defined here, we are unable to establish the conditions

under which the standard condition of cycles, f ′(zs) < −1, would hold under the

general bilateral trading mechanism.

We can show the existence of an endogenous cycle without relying on the standard

treatment of f ′(·) < −1. To establish a sufficient condition for an endogenous cycle,

consider a two-period cycle with z1 < zs < p∗ ≤ z2. Since z2 ≥ p∗, this cycle satisfies

z1 =
z2
1+i

< zs < p∗, where z1 solves

L(z1) =
(1 + i)2 − 1

α(1− σ + σχ)
χ.

It is straightforward to show that z1 < zs because L′(·) < 0, and zs solves (29). By

checking the condition z2 = z1(1 + i) > p∗, we can derive the condition under which

the economy exhibits a two-period cycle that satisfies z1 < zs < p∗ ≤ z2.
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Figure 3: A Two-period Cycle under Fractional Reserve Banking

Proposition 2 (Two-period Monetary Cycle). There exists a two-period cycle

with z1 < zs < p∗ ≤ z2 if χ ∈ (0, χ̄m], where

χ̄m ≡
(1− σ)αL

(
p∗

1+i

)
(1 + i)2 − 1− σαL

(
p∗

1+i

) .
When this type of two-period cycle exists, lowering χ increases the difference between

peak and trough, z2 − z1.

Proof. See Appendix A.

Proposition 2 shows that, under the general trading mechanism, lowering the re-

serve requirement can induce a two-period cycle and increase the volatility of the real

balances. By lowering χ, the liquidity premium dominates the storage value. Conse-

quently, f(·) is more likely to exhibit the backward bending feature, which can lead to

an endogenous cycle. Figure 3 shows an example of this case.

This two-period cycle emerges as follows. If you believe the value of money to-

morrow will decrease so that your money holdings cannot cover the required money

holdings for efficient quantity, you will want to acquire more money today. Due

to the increase in demand for money, the value of money will go up. This gives

z2 = z1
1+i

{
1−σ+σχ

χ
αL(z1) + 1

}
where z1 < q∗ and z2 > z1. Tomorrow, you believe the

value of money the next day will go up to cover the level of money holdings required

to buy the efficient quantity. The buyer is willing to hold their additional currency

15



because the rate of return on money is exactly equal to i. This gives z1 = z2
1+i

. A

lower reserve requirement increases today’s marginal value of money, given your be-

lief about tomorrow’s money value, because more inside money (demand deposits) is

created through fractional reserve banking. In other words, given a value of ϕ1 (z1),

lowering χ increases ϕ2 (z2) because of the money multiplier effect. Therefore, under

a low reserve requirement, there is a tendency for real money balances to go up and

down, which can generate a two-period cycle. This tendency also leads the economy

to feature higher-order cycles and chaotic dynamics.

Now, let’s introduce some additional assumptions to determine the condition for χ

such that f ′(zs) < −1. Consider a special case where −qu′′(q)/u′(q) = η, c(q) = q, and

the buyer makes a take-it-or-leave-it (TIOLI) offer. In this case, as L(zs) = u′(q) − 1

and L′(zs)zs = zsu
′′(zs) = −ηu′(zs), we can rewrite (30) as follows:

f ′(zs) =
1

1 + i

{
1− σ + σχ

χ
α [u′(zs)(1− η)− 1] + 1

}
< −1 (31)

where u′(zs) = 1 + iχ
α(1−σ+σχ)

. Solving (31) for χ yields the following proposition.

Proposition 3. Assume −qu′′(q)/u′(q) = η, c(q) = q, and the buyer makes take-it-or-

leave-it offer to the seller. If χ ∈ (0, χm), where

χm ≡ αη(1− σ)

η(1− ασ) + (2− η)(1 + i)
, (32)

then f ′(zs) < −1.

Proof. See Appendix A.

Since χ < χm implies f ′(zs) < −1, following the standard textbook method (see

Azariadis, 1993), we can show that if χ < χm, there exists a two-period cycle with

z1 < zs < z2. Whereas (32) is written in terms of χ, this condition can be written in

terms of i, as follows:

0 < i <
η[α(1− σ)− χ(1− ασ)]

χ(2− η)
(33)

The role of i on cycles depends on η. By (33), if η < 2, lowering either χ or i can

induce a cycle. If 2/(ασ) > η > 2, χm is negative when i > ηασ−2
2−η

and positive when

i < ηασ−2
2−η

. In this case, setting i higher than ηασ−2
2−η

eliminates cyclic equilibria. If

η ≥ 2/(ασ), χm is negative for all i, implying the cycle does not exist. When η = 2,

χm is constant, implying that the i has no effect on the cycle in this case.

16



0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

45o

50% Reserve Requirement
5% Reserve Requirement

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

45o

50% Reserve Requirement
5% Reserve Requirement

Figure 4: A Three-period Cycle under Fractional Reserve Banking

In addition to the conditions for a two-period cycle, the next result provides the

condition for a three-period cycle under the general trading mechanism. The existence

of three period-cycles implies cycles of all orders as well as chaotic dynamics (see

Sharkovskii, 1964 and Li and Yorke, 1975).

Proposition 4 (Three-period Monetary Cycle and Chaos). A three-period cycle

with z1 < z2 < p∗ ≤ z3 does not exist. There exists a three-period cycle with z1 < p∗ ≤
z2 < z3 if χ ∈ (0, χ̂m], where

χ̂m ≡
(1− σ)αL

(
p∗

1+i

)
(1 + i)3 − 1− σαL

(
p∗

1+i

) .
When this type of three-period cycle exists, lowering χ increases the difference between

peak and trough, z3 − z1.

Proof. See Appendix A.

The following corollary is a direct result from Proposition 4.

Corollary 1 (Binding Liquidity Constraint). In any n-period cycle, the liquidity

constraint binds, zt < p∗, at least one periodic point over the cycle.

Proof. See Appendix A.
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The model can also generate sunspot cycles. Consider a Markov sunspot variable

St ∈ {1, 2}. This sunspot variable is not related to fundamentals but may affect

equilibrium. Let Pr(St+1 = 1|St = 1) = ζ1 and Pr(St+1 = 2|St = 2) = ζ2. The sunspot

is realized in the FM. Let W S
t be the CM value function in state S in period t, then

W S
t (mt, dt, ℓt) = max

Xt,Ht,m̂t+1

U(Xt)−Ht + β
[
ζsG

S
t+1(m̂t+1) + (1− ζs)G

−S
t+1(m̂t+1)

]
s.t. ϕS

t m̂t+1 +Xt = Ht + Tt + ϕS
t mt + (1 + id,t)ϕ

S
t dt − (1 + il,t)ϕ

S
t ℓt.

The FOC can be written as

−ϕS
t + βζsG

′S
t+1(m̂t+1) + β(1− ζs)G

′−S
t+1(m̂t+1) = 0. (34)

Solving the FM problem results in

G′S
t+1(m

S
t+1) = ϕS

t+1

[
1− σ + σχ

χ
αL(zSt+1) + 1

]
. (35)

We substitute (35) into (34) and use the money market clearing condition mt+1 = Mt+1

to get the Euler equation.

ϕS
t = βζsϕ

S
t+1

[
1− σ + σχ

χ
αL(zSt+1) + 1

]
+ β(1− ζs)ϕ

−S
t+1

[
1− σ + σχ

χ
αL(z−S

t+1) + 1

]
.

where zSt+1 = ϕS
t+1Mt+1(1−σ+σχ)/σχ. Then multiply both sides of the Euler equation

by Mt(1−σ+σχ)/σχ to reduce the equilibrium condition into one difference equation

of real balances zSt+1:

zSt =
ζsz

S
t+1

1 + i

[
1− σ + σχ

χ
αL(zSt+1) + 1

]
+

(1− ζs)z
−S
t+1

1 + i

[
1− σ + σχ

χ
αL(z−S

t+1) + 1

]
= ζsf(z

S
t+1) + (1− ζs)f(z

−S
t+1). (36)

We define a sunspot equilibrium as follows:

Definition 2 (Proper Sunspot Equilibrium). A proper sunspot equilibrium consists

of the sequences of real balances {zSt }∞t=0,S=1,2 and probabilities (ζ1, ζ2), solving (36) for

all t.

Consider stationary sunspot equilibria with z1 < z2 that only depend on the state,

not the time. The liquidity constraint is binding in state S = 1. By the standard
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Figure 5: Self-Fulfilling Bubble and Burst Equilibrium

approach (see again Azariadis, 1993 for the textbook treatment), the condition for

two-period cycles is also sufficient and necessary for two-state sunspot equilibrium. If

f ′(zs) < −1 or χ < χ̄m, there exists (ζ1, ζ2) ∈ (0, 1)2, ζ1+ζ2 < 1, such that the economy

has a proper sunspot equilibrium in the neighborhood of zs.

Proposition 5 (Stationary Sunspot Equilibrium). The stationary sunspot equi-

librium exists if either χ < χm or f ′(zs) < −1.

Proof. See Appendix A.

In addition to the deterministic and stochastic cycles, the model also features the

equilibria where real balance increases above the steady-state until certain time, T , and

crashes to zero. Consider a sequence of real balances {zt}∞t=0 with zT ≡ max{zt}∞t=0 > zs

(bubble) that crashes to 0 (burst) as t → ∞, where T ≥ 1 and zT > z0. We refer to

this equilibrium as a self-fulfilling bubble and burst equilibrium:

Definition 3 (Self-Fulfilling Bubble and Burst Equilibrium). For initial real

balance z0 > 0, a self-fulfilling bubble and burst equilibrium is a sequence of {zt}∞t=0

satisfying (28) and 0 < zs < zT , limt→∞ zt = 0 where zT = max{zt}∞t=0 with T ≥ 1.

Figure 5 illustrates an example. In Figure 5, f is not monotone, so f−1 is a corre-

spondence. When f is not monotone, there are multiple equilibrium paths for {zt+1}
over some range for zt. This example starts at z0, which is lower than zs, and then

increases, surpassing zs, repeatedly rising until it reaches z6. Afterward, it crashes and
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eventually converges to 0. During the bubble, the return on money is equal to 1/(1+i),

and liquidity is abundant. However, the real balances cannot continue to increase in-

definitely otherwise it would violate the transversality condition. The real balance

increases until it reaches a certain point, after which the economy crashes and moves

toward a non-monetary equilibrium. The timing of these crashes is indeterminate.

The next step is to examine the conditions under which this type of equilibrium

can occur. When zs > z̄, where z̄ satisfies f ′(z̄) = 0, multiple equilibria exist. This

implies that solving zt = f(zt+1) given zt yields multiple solutions for zt+1. If f(z̄) ≥ q∗,

the self-fulfilling bubble and burst equilibrium exists. Assuming −qu′′(q)/u′(q) = η,

c(q) = q, and a buyer makes a TIOLI offer to the seller, Proposition 6 shows that

lowering the reserve requirement can induce this type of equilibrium.

Proposition 6 (Existence of Self-Fulfilling Bubble and Burst Equilibrium).

Assume −qu′′(q)/u′(q) = η, c(q) = q, and the buyer makes take-it-or-leave-it offer to

the seller. There exist a self-fulfilling bubble and burst equilibrium, if

0 < χ < min

{
(1− σ)αη(1 + i)

(1− η)2q∗ + (1 + i)[(1− η)(3 + i− η)− αση]
,

αη(1− σ)

1 + i− η(i+ ασ)

}
Proof. See Appendix A.

4 Money and Unsecured Credit

Consider an alternative payment instrument in the DM - unsecured credit. The buyer

can pay for DM goods using unsecured credit that will be redeemed to the seller in

the following CM and she can borrow up to her debt limit, b̄t. For simplicity, I assume

that the buyer makes a TIOLI offer to the seller in the DM, which means the buyer

maximizes her surplus subject to the seller’s participation constraint. The DM cost

function is c(q) = q. Suppose the buyer has issued bt units of unsecured debt in the

previous DM (or, if bt < 0, the seller has extended unsecured loans to the buyer from

the previous DM). The CM value function is

Wt(at, st, ℓt,−bt) = max
Xt,Ht,m̂t+1

U(Xt)−Ht + βGt+1(m̂t+1)

s.t. ϕtm̂t+1 +Xt = Ht + Tt + ϕtat + (1 + is,t)ϕtst − (1 + il,t)ϕtℓt − bt,
(37)
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which is the same as before except that the agent needs to pay or collect the debt. The

agent’s FM problem is identical to the previous section. Then, 1−σ fraction of agents

will deposit m̂t+1, and σ fraction of agents will borrow loan from the bank. The DM

value function is

V b
t (mt + dt, 0, ℓt) = α[u(qt)− qt] +Wt(mt + dt, 0, ℓt, 0),

where qt = min{q∗, b̄t + (mt + dt)ϕt} and dt = ℓt. Given b̄t, solving equilibrium yields

zt =


zt+1

1 + i

{
1− σ + σχ

χ
α
[
u′(zt+1 + b̄t+1)− 1

]
+ 1

}
if zt+1 + b̄t+1 < q∗

zt+1

1 + i
if zt+1 + b̄t+1 ≥ q∗,

(38)

where zt+1 = (1− σ + σχ)ϕt+1Mt+1/(σχ).

Next, I am going to endogenize the debt limit. The buyer cannot commit to pay

back the debt. If the buyer reneges she is captured with probability µ. The punishment

for a defaulter is permanent exclusion from the DM trade but she can still produce for

herself in the CM. The value of autarky is W(0, 0, 0, 0) = [U(X∗) −X∗ + T ]/(1 − β).

The incentive condition for voluntary repayment is

−bt +Wt(at, dt, ℓt, 0)︸ ︷︷ ︸
value of honoring debts

≥ (1− µ)Wt(at, dt, ℓt, 0) + µW(at, dt, ℓt, 0)︸ ︷︷ ︸
value of not honoring debts

.

One can write the debt limit b̄t as bt ≤ b̄t ≡ µWt(0, 0, 0, 0)− µW(0, 0, 0, 0). Recall

the CM value function. Using the solution of FM, we can rewrite the buyer’s CM value

function as

Wt(0, 0, 0, 0) = U(X∗)−X∗ + Tt + βWt+1(0, 0, 0, 0)

+ max
m̂t+1

{−ϕtm̂t+1 + βασ[u(qt+1)− qt+1] + βϕt+1m̂t+1},

where qt+1 = min{q∗, zt+1 + b̄t+1}. Substituting Wt(0, 0, 0, 0) = b̄t/µ+W(0, 0, 0, 0) and

m̂t+1 = Mt+1 yields

b̄t
µ

= −ϕtMt+1 + βασ[u(zt+1 + b̄t+1)− zt+1 − b̄t+1] +
βb̄t+1

µ
+ βϕt+1Mt+1,
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where Mt+1 and zt+1 solve (38). Rearranging terms yields

b̄t = βb̄t+1 +
χµσ[−γzt + βzt+1]

1− σ + σχ
+ βαµσS(zt+1 + b̄t+1) (39)

where S(·) is the buyer’s trade surplus and defined as

S(zt+1 + b̄t+1) ≡

{
u(zt+1 + b̄t+1)− zt+1 − b̄t+1 if zt+1 + b̄t+1 < q∗

u(q∗)− q∗ if zt+1 + b̄t+1 ≥ q∗.

The equilibrium can be collapsed into a dynamic system satisfying (38)-(39).

Stationary Equilibrium In the stationary equilibrium, (38) becomes

− iχ

α(1− σ + σχ)
+ u′(q)− 1 ≤ 0,= if z > 0 (40)

and (39) becomes

(1− β)b̄ =


χµσ[β − γ]z

1− σ + σχ
+ βαµσ[u(z + b̄)− z − b̄] if z + b̄ < q∗

χµσ[β − γ]z

1− σ + σχ
+ βαµσ[u(q∗)− q∗] if z + b̄ ≥ q∗,

(41)

where q = min{z + b̄, q∗}. The stationary equilibrium solves the above two equations,

and it falls into one of the three cases: the pure money equilibrium, the pure credit

equilibrium, and the money-credit equilibrium. First, if no one can capture the buyer

after she reneges, µ = 0, the unsecured credit is not feasible, b̄ = 0. In this case, the

equilibrium will be the pure money equilibrium. Second, when b̄ solving (75) satisfies

u′(b̄) < iχ/[α(1− σ + σχ)] then money is not valued, z = 0. We have the pure credit

equilibrium in this case. Third, if solutions of (40)-(75), (z, b̄) are strictly positive then

we have the money-credit equilibrium.

The debt limit at the stationary equilibrium, b̄, is a fixed point satisfying b̄ = Ω(b̄)
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where

Ω(b̄) =



µσα

ρ
[u(q̃)− q̃]− iµσχ

ρ(1− σ + σχ)
(q̃ − b̄) if q̃ > b̄ ≥ 0

µσα

ρ
[u(b̄)− b̄] if q∗ > b̄ ≥ q̃

µσα

ρ
[u(q∗)− q∗] if b̄ ≥ q∗

(42)

where q̃ solves u′(q̃) = 1 + iχ/[α(1− σ + σχ)] and ρ ≡ 1/β − 1. The DM consumption

qs is determined by qs = min{q∗,max{q̃, b̄}}. Money and credit coexist if and only if

0 < b̄ < q̃, which holds when 0 < µ < min{1, µ̃}, where

µ̃ ≡ ρ(1− σ + σχ)

ασ[u(q̃)/q̃ − 1](1− σ + σχ)− 2iσχ
.

The DM consumption is decreasing in i in the stationary monetary equilibrium.

Cycles Consider the dynamics of equilibria where money and credit coexist. I claim

the main results from Section 3 - lowering the reserve requirement can induce endoge-

nous cycles - still hold even after unsecured credit is introduced. It is clear that the

standard treatment f ′(zs) < −1 from Azariadis (1993) cannot be used here because

now the equilibrium consists of a system of equations. Instead, I apply the approach

used in Proposition 2 and 4. For compact notation, let wj ≡ zj + b̄j. The following

proposition establishes the conditions for a two-period cycle, a three-period cycle, and

chaotic dynamics.

Proposition 7 (Monetary Cycles with Unsecured Credit). There exists a two-

period cycle of money and credit with w1 < q∗ < w2 if χ ∈ (0, χ̄c) where (χ̄c, q̄, z1)

solves

χ̄c =
(1− σ)α [u′ (q̄)− 1]

(1 + i)2 − 1− σα [u′ (q̄)− 1]
(43)

{q∗ − (1 + i)z1} =
σαµ{β2S(q∗) + βS(q̄)}+ χ̄cµσz1{1−(1+i)2}

β(1−σ+σχ̄c)

(1− β2)
(44)

z1(i− ρ) + (1 + ρ)q̄ − σαµS(q∗) = q∗ (45)

There exists a three-period cycle of money and credit with w1 < q∗ < w2 < w3, if
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χ ∈ (0, χ̂c) where (χ̂c, q̄, z1) solves

χ̂c =
(1− σ)α [u′ (q̄)− 1]

(1 + i)3 − 1− σα [u′ (q̄)− 1]
(46)

{q∗ − (1 + i)z1} =
σαµ{(β2 + β3)S(q∗) + βS(q̄)}+ χ̂cµσz1{1−(1+i)3}

β(1−σ+σχ̂c)

(1− β3)
(47)

z1(i− ρ) + (1 + ρ)q̄ − σαµS(q∗) = q∗ (48)

Proof. See Appendix A.

5 Calibrated Examples

5.1 Parameters and Targets

In this section, I calibrate the model with unsecured credit from Section 4 using U.S.

data from 1976-2008. For monetary aggregates, I use M1 adjusted for retail sweep

accounts, following Aruoba, Waller and Wright (2011) and Venkateswaran and Wright

(2014). Following Krueger and Perri (2006) and Bethune, Choi and Wright (2020), I

use revolving consumer credit series as unsecured credit.

The following functional forms are used for parametrization. The utility functions

are

U(X) = B log(X), u(q) =
q1−η

1− η

implying X∗ = B and the DM cost function is given as c(q) = q. Assume the buyer

makes a take-it-or-leave-it offer to the seller in the DM trade, implying λ(q) = q−η − 1.

The matching function in the DM is M(B,S) = BS
B+S , where B and S denotes the

measure of buyers and sellers, respectively. This implies α = M(σ, 1 − σ)/σ = 1 − σ

and αs = M(σ, 1− σ)/(1− σ) = σ.

First, as standard, I calibrate the model at an annual frequency. The discount

rate is set to β = 0.9709 so that the real annual interest rate ρ is 3%. The other

targets are calculated with US data for 1976-2008. Based on the average required

reserve to deposit ratio for 1976-2008, I set the benchmark required reserve ratio to

8.24%.6 The benchmark nominal interest rate i is set to 0.0579, matching the average

6This ratio is computed by dividing the required reserves by the deposit component of sweep-
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annualized rate of 5.79%. For normalization, I set the fraction of buyers to σ = 0.5.

The parameters (B, η) are calibrated to match money demand. In the model, money

demand is expressed as real balances of money relative to output:

Z ≡ z

Y
=

z

B + σαq

where y represents real output. The elasticity of z/Y with respect to i is:

∂ log(Z)

∂ log(i)
=

i

Z

∂Z

∂i
.

The parameter B is calibrated to match the average money stock to GDP ratio of

0.1473, while η is set to match the elasticity of z/Y with respect to i. This target

elasticity is estimated as:

log(Zt) = β0 + β1 log(it) + εt,

which gives β1 = −0.0692.7 The monitoring probability µ is calibrated to match the

unsecured credit to output ratio of 0.0428, represented in the model as σαb/y. I also

recalibrate B and σ for a quarterly frequency. The benchmark quarterly nominal

interest rate is set to i = 0.0142, corresponding to the annual rate of 5.79% through

(1.0579)
1
4 − 1 = 0.0142. The quarterly real interest rate is set to 0.74%, corresponding

to the annual rate of 3% through (1.03)
1
4 − 1 = 0.0074. I set B to one-quarter of

its annual value By, maintain the same η and µ, and recalibrate σ to match 0.5907

(4×0.1477). Given calibrated parameters and the benchmark interest rates, we can

report χ̄c and χ̂c as defined in (43) and (46). Table 1 presents the calibration results.

At the benchmark interest rate, the thresholds are χ̄c = 1.80% and χ̂c = 1.16% in the

annual model. In the quarterly model χ̄c = 5.93% and χ̂c = 3.91% which are below of

benchmark reserve requirement. While χ at or below the threshold generates cycles,

values above the threshold do not necessarily exclude the possibility of cycles, as this

is not a necessary and sufficient condition for their occurrence.

The DM curvature parameter η deserves some discussion. In monetary search mod-

els, higher-order cycles typically emerge as the curvature parameter increases. Many

adjusted M1, averaging 0.0824 for 1976-2008.
7This OLS estimate is similar to other estimates from the literature. Under similar specifications,

Kejriwal, Perron and Yu (2022) report -0.0786 using 1976:Q2–2010:Q4 data, and Mogliani and Urga
(2018) report -0.11 using 1976-2013 data.
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Table 1: Model parametrization

Description Value Data Model Target/Reason

Annual
Rate of time discount, ρy 0.03 Annual real interest rate of 3%
Prob. of being a buyer, σ 0.5 Normalization
CM utility level, By 2.7302 0.1477 0.1477 Avg. z/Yy

Monitoring probability, µ 0.1364 0.0428 0.0428 Avg. σαb/Yy

Parameter of u(·), η 0.3123 −0.0692 −0.0692 Elasticity of z/Yy wrt i
Thresholds
χ̄c 1.80%
χ̂c 1.16%

Quarterly

Rate of discount, ρ 0.0074 (1 + ρy)1/4 − 1
Prob. of being a buyer, σ 0.0714 0.5907 0.5907 Avg. z/Y
CM utility level, B 0.6825 B = By/4
Monitoring probability, µ 0.1364 Annual calibration
Parameter of u(·), η 0.3123 Annual calibration
Thresholds
χ̄c 5.93%
χ̂c 3.91%

Note: To distinguish CM utility level parameter B and discount rate ρ between annual
model and quarterly model, I denote their annual values as By and ρy

cases exhibiting endogenous boom-bust dynamics have curvature parameters greater

than 18. However, calibrated values of the DM curvature parameter in monetary search

models usually fall below 1. Lagos and Wright (2005) reports values between 0.27 and

0.48 using 1959-2000 data. Venkateswaran and Wright (2014) finds values of 0.63 and

0.39, both yielding similar quantitative results. Berentsen, Huber and Marchesiani

(2015) documents values of 0.377 and 0.389, while Bethune et al. (2020) reports 0.67

under DM price posting and 0.58 under DM sequential search. This paper finds a value

of 0.3123, consistent with the literature. When χ is below the threshold, the model

can exhibit endogenous boom-bust dynamics at reasonable parameter values when we

incorporate the fractional reserve banking.

Given the parameterization, we compare thresholds with actual data.9 Figure 6

presents the model-implied thresholds for cycles. Figures 6a and 6b show thresholds

for two-period cycles (χ̄c) and three-period cycles with chaotic dynamics (χ̂c) using

annual and quarterly parameterization, respectively. The annual model shows χ̄c falls

below χ after 2000. In the quarterly model, χ̄c has remained below χ since 1981,

while χ̂c dropped below χ in 1991. These findings suggest the economy could exhibit

8See He, Wright and Zhu (2015), Gu, Han and Wright (2019), Altermatt et al. (2023) for related
numerical exercises and discussion.

9To compute χ, I divide required reserves by the deposit component of sweep-adjusted M1.
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Figure 6: Model Implied Thresholds

endogenous fluctuations and chaotic dynamics, implying cyclical behavior driven by

fractional reserve banking, independent of exogenous shocks and fundamental changes.

I find that incorporating fractional reserve banking allows the model to feature cyclical

behavior, indicating that this volatility channel should be considered in addition to

economic fluctuations induced by exogenous shocks disrupting the dynamic system.

5.2 Endogenous Cycles and Limit Cycles

5.2.1 Endogenous Cycles

Recall that the equilibrium is a dynamic system satisfying (38)-(39):

zt =


zt+1

1 + i

{
1− σ + σχ

χ
α
[
u′(zt+1 + b̄t+1)− 1

]
+ 1

}
if zt+1 + b̄t+1 < q∗

zt+1

1 + i
if zt+1 + b̄t+1 ≥ q∗,

b̄t = βb̄t+1 +
χµσ[−γzt + βzt+1]

1− σ + σχ
+ βαµσS(zt+1 + b̄t+1)

Given calibrated parameters, one can find different types of cycles. Figure 7 pro-

vides examples of endogenous cycles. When the reserve requirement is lower than the

threshold, the model exhibits endogenous cycles. Figure 7a presents an endogenous cy-

cle in the annual model, and Figure 7b presents an endogenous cycle in the quarterly

model.
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Figure 7: Calibrated Examples I

In the annual model, χ needs to be set below the empirical reserve requirement to

generate endogenous cycles, while the quarterly model can generate such cycles even

with the historical value of χ. This suggests that the inherent instability of fractional

reserve banking may contribute to economic fluctuations at quarterly frequency but

not at annual frequency. In all examples, the lowest values (z1 and b1) are lower than

their steady state values (zs, bs), while all the others are greater than their steady state

values. These example cycles feature fluctuations around the steady state.

One notable observation is that the fluctuations in bt are very small compared to

the fluctuations in zt. To understand this, one can take the derivative of (39) with

respect to bt+1, evaluated at the steady state, assuming money balances are given:

∂bt
∂bt+1

∣∣∣
bt+1=bs

= β{1 + σαµ[u′(qs)− qs]} = β

{
1 +

σαµχi

α(1− σ + σχ)

}
> 0 (49)
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Table 2: Comparison of three different economies.

Type zt =

Fractional Reserve Banking
zt+1

1 + i

{
1− σ + σχ

χ
αL(zt+1 + bt+1) + 1

}
100% Reserve Banking

zt+1

1 + i
{αL(zt+1 + bt+1) + 1}

No Banking
zt+1

1 + i
{σαL(zt+1 + bt+1) + 1}

Type bt =

Fractional Reserve Banking βb̄t+1 +
χµσ[−γzt + βzt+1]

1− σ + σχ
+ βσαµS(zt+1 + b̄t+1)

100% Reserve Banking βb̄t+1 + µσ[−γzt + βzt+1] + βσαµS(zt+1 + b̄t+1)

No Banking βb̄t+1 + µ[−γzt + βzt+1] + βσαµS(zt+1 + b̄t+1)

Note: When the buyer makes a take-it-or-leave-it offer to the seller in the DM trade, we
have L(q) = u′(q)− 1 and S(q) = u(q)− q.

where χi = (1 − σ + σχ)α[u′(qs) − qs]. To generate endogenous credit cycles solely

from the credit market side, we need ∂bt/∂bt+1|bt+1=bs < −1.10. However, this cannot

happen in this model. Therefore, the cycles in this model are either from the money

real balance dynamics channel or from more complicated joint dynamics of money and

credit.

To better understand how these cycles work, we can compare with other examples:

100% reserve banking and the economy without banking. 100% reserve banking is a

special case with χ = 1 which can be written as:

zt =


zt+1

1 + i

{
α
[
u′(zt+1 + b̄t+1)− 1

]
+ 1

}
if zt+1 + b̄t+1 < q∗

zt+1

1 + i
if zt+1 + b̄t+1 ≥ q∗,

(50)

b̄t = βb̄t+1 + µσ[−γzt + βzt+1] + βαµσS(zt+1 + b̄t+1) (51)

We can also consider a model without banking à la Gu et al. (2016). More detail of

10See Gu et al. (2013) and Gu (2023) for the assessment on endogenous credit cycles and Azariadis
(1993) for textbook treatment on endogenous cycles
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the model environment and the agents’ problem can be found in Appendix B.11 The

equilibrium without bank solves (52)-(53)

zt =


zt+1

1 + i

{
σα

[
u′(zt+1 + b̄t+1)− 1

]
+ 1

}
if zt+1 + b̄t+1 < q∗

zt+1

1 + i
if zt+1 + b̄t+1 ≥ q∗,

(52)

b̄t = βb̄t+1 + µ[−γzt + βzt+1] + βµσαS(zt+1 + b̄t+1) (53)

Table 2 summarizes the model comparison. In terms of real balance dynamics, the

key differences can be captured by multipliers on liquidity premium L(·). In the model

with banking it is multiplied by σα but under 100% reserve banking it is multiplied by

α. This is because having banking and inside money in the environment allow again to

offset the idiosyncratic risk σ. The agent can hold idle balances due to idiosyncratic risk

σ but 100% reserve banking allows agents to insure this idiosyncratic risk through inside

money and reallocation of liquidity. This is a case of Berentsen et al. (2007) except

for the fact that this model has unsecured credit. However, under fractional reserve

banking the liquidity premium is multiplied by α 1−σ+σχ
χ

. Lowering χ increase this

multiplier so that increases aggregate money supply more than 100% reserve banking

case because it creates more inside money.

While monetary economies often exhibit different kinds of dynamic equilibria stem-

ming from the self-fulfilling nature of money, it is not possible to numerically find

the N-periodic cycles from the cases of no banking and 100% reserve banking, and

fractional reserve banking with high reserve requirements. Figure 8 illustrates the

differences between each case.

Figure 8a provides examples of (38) where bt is fixed at 0.4, and Figure 8b provides

examples of (39) where zt and zt+1 are fixed at 0.4. Under calibrated parameters,

Figure 8a remains similar to Figure 2b of Section 3 even after we introduced unsecured

credit. It is nonmonotone in general. Adding 100% banking to no banking or lowering

the reserve requirement shifts up the nonlinear branch in Figure 8a. This is because

adding banks or lowering the reserve requirement amplifies the liquidity premium, as

it enables banks to generate more liquidity through lending. This amplification of

liquidity enhances the backward-bending feature, leading to endogenous cycles. Unlike

11There are some differences compared to Gu et al. (2016): (1) In Gu et al. (2016), agents’ types
in DM are fixed, but not here; (2) In addition to the buyers’ problem of whether they honor their
repayment of credit, Gu et al. (2016) also consider whether they honor their public (tax) obligations.
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Figure 8: Calibrated Examples II

Figure 8a, the dynamics of bt in Figure 8b are virtually invariant with respect to χ and

almost linear, showing no features related to endogenous cycles.

Can we relate this result to previous works which show higher-order cycles typi-

cally emerge as the curvature parameter increases in the monetary search model? In

discrete time monetary search models, endogenous cycles emerge usually due to the

backward-bending feature of nonlinear difference equations. Increasing the curvature

parameter of DM utility enhances this backward-bending feature, making cycles more

likely. However, as shown above, lowering the reserve requirement has a similar effect.

Consequently, endogenous cycles can emerge even without a high curvature parameter.

However, while both enhance the backward-bending features, increasing η and lowering

χ have different effects in general.

5.2.2 Limit Cycles

This section examine limit cycles and their cyclical volatility using the quarterly

model.12 To study limit cycles, I solve the model with 10,000 iterations and 9,700

period transient phase. Figures 9 and 10 illustrate limit cycles under 8% and 4% re-

serve requirements, respectively. Figure 9 shows that the limit cycle under 8% reserve

requirement doesn’t really exhibit fluctuations over time. In contrast, Figure 10 shows

that with a 4% reserve requirement, the limit cycle demonstrates complex dynamics

12Recent applications of limit cycles and bifurcation theory include Beaudry, Galizia and Portier
(2020), Asano, Shibata and Yokoo (2024), and Gu, Wang and Wright (2024).
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Figure 9: Limit Cycles under 8% Reserve Requirement
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Figure 10: Limit Cycles under 4% Reserve Requirement

with substantial fluctuations over time.

These examples illustrate two important findings about fractional reserve banking:

first, factional reserve banking can generate limit cycles with varying magnitudes of

fluctuation, and second, lower reserve requirements tend to produce larger economic

fluctuations. Given these observations, the natural question becomes how to quantify

these endogenous fluctuations systematically, beyond comparing limited numbers of

illustrative examples.

To assess the volatility of endogenous fluctuations under different reserve require-

ments, I fix all parameters and the central bank’s policy except reserve requirement,

and plot its bifurcation diagrams. Similar as before, given the parameters and poli-

cies, I compute the limit cycles by solving the model with 10,000 iterations and 9,000

transients.

Figure 11 presents the bifurcation diagrams. The left-panel of Figure 11 plots

a bifurcation diagram of money real balances, the right-panel of Figure 11 plots a

bifurcation diagram of unsecured credit. It shows that when the reserve requirement

is higher than 6%, the real balances and economy tend to converge to a steady state

(or stationary monetary equilibrium). When the reserve requirement is around 6%,

32



Figure 11: Bifurcation Diagram of Fractional Reserve Banking
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Figure 12: Cyclical Volatility of Limit Cycles

evident limit cycles emerge. When the reserve requirement is lower than 6%, lowering

the reserve requirement monotonically increases the cyclical volatility of real money

balances. Given the bifurcation diagrams of Figure 11, it is clear that lowering the

reserve requirement increases the magnitude of the limit cycles of money real balances.

Unlike real money balances, in the bifurcation diagrams, it is not evident if lowering

reserve requirement increase the volatility of unsecured credit fluctuations.

To examine how reserve requirements affect money and credit fluctuations, I com-

pute the cyclical volatility of limit cycles under different reserve requirement. I measure

cyclical volatility by calculating the standard deviation of filtered logarithms - both

for real money balances and the real value of unsecured credit. For filtering, I use the

standard Hodrick-Prescott (HP) filter with a smoothing parameter of 1600 as we use
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the quarterly model.

Figure 12 plots the cyclical volatility of limit cycles for each given reserve require-

ment. Cyclical volatility of real money balances is zero or almost zero when χ is

greater than 6%. When χ is lower than 6%, one can observe cyclical volatility of the

limit cycles, and lowering χ monotonically increases the volatility. However, the result

of cyclical volatility of unsecured credit is more subtle. Cyclical volatility is zero or

almost zero when χ is greater than 6%. As with real money balances, when χ is lower

than 6%, cyclical volatility of the limit cycles emerges.

Interest rate fluctuations over cycles As pointed out by a referee, I acknowledge

three points: (1) The (gross) inflation ϕt/ϕt+1 equals γ only in stationary equilibrium;

(2) Similarly, the (gross) nominal interest rate equals γ/β only in stationary equilib-

rium; (3) The actual nominal interest rate fluctuates during cycles. To examine how

the nominal interest rate fluctuates during cycles, recall (28) and rewrite as below using

i ≡ γ/β − 1 and γ = Mt+1/Mt:

ϕt

βϕt+1

=

{
1− σ + σχ

χ
αL(zt+1 + bt+1) + 1

}
In nonstationary equilibria, the nominal interest rate on (fictitious) illiquid bonds

it equals
ϕt

βϕt+1
− 1. Thus, we can solve for the sequence of nominal interest rates:

it =

{
1− σ + σχ

χ
αL(zt+1 + bt+1) + 1

}
− 1

Figure 13a shows an example of nominal interest rate fluctuations from the limit cycle

in the quarterly model under χ = 6%. The actual nominal interest rate in the model,

it, fluctuates around the long-run target interest rate, i, during cycles.13

In the model economy, pegging ϕt

βϕt+1
fixes all allocations over time and eliminates

endogenous fluctuations. Same to this, Altermatt et al. (2023) show that a nominal

interest rate peg eliminates endogenous fluctuations when money is the only liquid

asset, but also show this does not hold with multiple liquid assets.

The model economy in this paper considers a policy of pegging money growth rate,

which allows interest rate dynamics around the longer-term target rate. Allowing the

fluctuation of nominal interest rates over cycles is not inconsistent with actual data.

13Please note that this model is not intended to match interest rate dynamics quantitatively. Rather,
it just demonstrates that, qualitatively, interest rates fluctuate over time around the target rates in
both the model and data.
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Figure 13: Nominal Interest Rate Dynamics

Figure 13b plots the differences between the federal funds rate and its target, and

between the 3-month treasury rate and the federal funds target rate. The short-term

rates fluctuate around the target rather than being strictly pegged to it.

5.3 A Fundamental Shock and Stochastic Cycles

Consider the linear CM porduction technology with aggregate productivity At. The

CM consumption good X is produced by the technology Xt = AtNt where Nt is labor

input in the CM production. With labor market clearing condition, Ht = Nt where Ht

is the agent’s labor supply in CM, we have the real wage At instead of 1. Given this

modification, we can rewrite the model as

zt
At

= Et

{
zt+1

At+1(1 + i)

[
1− σ + σχ

χ
αL

(
zt+1 + b̄t+1

At+1

)
+ 1

]}
(54)

b̄t =
χσµ

1− σ + σχ

[
−γ

zt
At

+ Et

{
βzt+1

At+1

}]
+ βEt

{
b̄t+1 + µσαS

(
zt+1 + b̄t+1

At+1

)}
(55)

Let At be a sequence of independent and identically distributed (i.i.d.) random

variables following a log-normal distribution with mean value of 1 i.e., logAt ∼ N(0, σA)

so that Et[At+1] = 1. Given the random shock At, we can simulate the time series of

dynamic system (54)-(55).

Figure 14 shows examples using the modified quarterly model where σA = 0.03.
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Figure 14: Stochastic Cycle: Examples
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Figure 15: Cyclical Volatility of Stochastic Cycles

Top panels present the result with χ = 8% and the bottom panels provide the example

with χ = 4%. When χ = 8%, money real balances zt exhibit large fluctuations while

credit remains stable. In contrast, when χ = 4%, both zt and bt fluctuate over time,

with zt showing even larger variations than in the χ = 8% case. This example shows

that reducing the reserve requirement not only generates cycles but also amplifies their

magnitude.

Figure 15 plots the cyclical volatility of limit cycles for each given reserve require-

ment. Cyclical volatility of real money balances is almost constant when χ is greater

than 6%. When χ is lower than 6%, one can observe the increase in cyclical volatility,

and lowering χ monotonically increases the volatility. However, the result of cyclical

volatility of unsecured credit is more subtle. Cyclical volatility is zero or almost zero

when χ is greater than 6%. As with real money balances, when χ is lower than 6%,

cyclical volatility drastically increased. But overall, when cycles are present, lowering

the reserve requirement lowers the cyclical volatility of unsecured credit.

Given the provided numerical examples above, one can ask whether there is any

possibility to distinguish between dynamics driven by the external shock and those

driven by the system’s inherent instability. Motivated by Beaudry et al. (2020), we

can perform a simple exercise to separate these two sources of dynamics as follows:

First, we treat the limit cycles without external shock as the system’s inherent insta-

bility. Second, given the dynamic system, we can pick the parameter of the external

shock to match the volatility of economic fluctuations. This allows us to quantify the

contribution of each source to the overall economic fluctuations.
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Table 3: Cyclical Volatility of Cycles

Period χ i
Cyclical Volatility of Real Balances (σc

z) σA
σc
z without shocks

σc
z with shockData Model w/o shock Model with shock

1971-2010 9.14% 5.51% 0.0315 7.8563e-14 0.0315 0.0327 0.00%
1971-1980 16.11% 6.80% 0.0269 7.9601e-14 0.0269 0.0280 0.00%
1981-1990 10.81% 8.43% 0.0402 7.9229e-14 0.0402 0.0418 0.00%
1991-2000 6.19% 4.69% 0.0288 7.8446e-14 0.0288 0.0299 0.00%
2001-2010 3.47% 2.13% 0.0290 0.0037 0.0290 0.0299 12.68%

10% 2.13% 7.8217e-14 0.0288 0.0299 0.00%
Numerical 5% 2.13% 0.0026 0.0290 0.0299 8.97%
Examples 1% 2.13% 0.0131 0.0313 0.0299 41.85%

0.1% 2.13% 0.0529 0.0620 0.0299 85.32%

Note: Cyclical Volatility from data is calculated using quarterly sweep-adjusted M1 with
Hodrick-Prescott Filter. Reserve requirement χ is calculated by

More specifically, we can pick σA to match the cyclical volatility from the data.

Given parameters, we can compute the cyclical volatility of limit cycles without external

shock. Then one can compute how much fraction of fluctuations can be explained by

the inherent instability of the system. These assessments are based on 1971-2010, and

its sub-periods (1971-1980, 1981-1990, 1991-2000 and 2001-2010). Table 3 summarizes

the result.

Except for 2001-2010, the percentage of fluctuations explained by limit cycles is

almost zero. But for 2001-2010, it accounts for 12.68% of the cyclical volatility, which

is significant. The differences are mainly from lower reserve requirement. Table 3 also

provides some numerical experiments with fixing σA and i, and compute volatility under

10%, 5%, 1% and 0.1% reserve requirement. The results show that lowering reserve

requirement increases volatility both with and without shock. Also, the contribution

by inherent instability of the system increases as reserve requirement decreases.

5.4 News Shocks

This section explores the role of reserve requirements in the dynamics resulting from

news about future changes in monetary policy. To analyze the impact of such news,

I follow Gu et al. (2019) who study the effect of news in the economy where liquidity

plays a role. Gu et al. (2019) show that the response to the announcement can be

complicated, and it highly depends on parameters. Using the calibrated quarterly

model, this section examines how reducing the reserve requirement can complicate the

effects of the monetary policy announcement.
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Let the central bank change i permanently, from i0 to iT .
14 Suppose news on

changes in the monetary policy at T is announced at time 0. As in Gu et al. (2019),

I focused on unique transition consistent with stationarity after information shock.

Initially, the economy is in its unique stationary equilibrium for a given i0. At t = 0

it is announced that i will change to i = iT at t = T and stay at iT permanently.

Therefore the stationary equilibrium zT for a given iT is a fixed terminal condition

that pins down the transition by backward induction.

Consider the dynamics of real balances and unsecured credit. The permanent

change from i0 to iT implies a shift of equations (38) and (39), from zt = Φ0(zt+1, b̄t+1; i0, χ)

and b̄t = Γ0(zt+1, b̄t+1; i0, χ) to zt = ΦT (zt+1, b̄t+1; iT , χ) and b̄t = ΓT (zt+1, b̄t+1; iT , χ),

respectively. Then, starting in steady state with (z0, b̄0) and ending in steady state

with (zT , b̄T ), the transitional dynamics of the equilibrium can be solved by backward

induction.

zT = ΦT (zT , b̄T ), zT−1 = Φ0(zT , b̄T ), zT−2 = Φ0(zT−1, b̄T−1), ... z0 = Φ0(z1, b̄1)

b̄T = ΓT (zT , b̄T ), b̄T−1 = Γ0(zT , b̄T ), b̄T−2 = Γ0(zT−1, b̄T−1), ... b̄0 = Γ0(z1, b̄1)

Consider a case with T = 13. In Figure 16, we begin with a stationary equilibrium

with i = 0.04. At time 0, an announcement is made that there will be a permanent

change in i to 0.02 at time T = 13. The stationary equilibrium with i = 0.02 is a

terminal condition for this dynamic system.

For comparison, we first examine cases with no banking and full reserve require-

ments. In the no-banking case, real money balances and credit converge monotonically

to the new equilibrium. Most policy impacts are reflected as soon as the announce-

ment is made. Under a 100% reserve requirement, the transitional dynamics of real

money balances are monotonic, and a significant portion of the effect is reflected when

the announcement is released. However, the transitional dynamics of credit become

non-monotonic. Credit drops first and eventually converges to the new equilibrium

gradually.

Fractional reserve banking cases show more complicated dynamics. Under a 50%

reserve requirement, when the announcement is released, only negligible changes are

reflected in real balances. When χ = 10%, both transition dynamics become non-

monotonic. They can fluctuate considerably when reserve requirements are very low

14The permanent change in i implies a permanent change in the rate of monetary expansion, γ,
from γ0 = β(1 + i0) to γT = β(1 + iT ).
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Figure 16: Phase Dynamics and Transition Paths for Known Policy Change
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(χ = 5% and χ = 4%). News about monetary policy induces complicated dynamics

in z and b when reserve requirements are low. Figure 16 also shows that there is an

asymmetry in the transitional dynamics when the reserve requirement is low. When

χ = 5%, news leading to an increase in zt at t = 1 tends to lower bt at t = 1 because

higher zt raises the equilibrium payoff of holding money, which in turn reduces the use

of credit.

As shown in Figure 16, transitions display various patterns depending on χ, with

lower reserve requirements more likely to induce cyclic and boom-bust responses. There

is perfect foresight about the event, and the transition is uniquely determined. How-

ever, it can display a wide range of patterns depending on reserve requirements. Under

the no-banking case and the 100% reserve requirement case, zt increases monoton-

ically towards zT . However, with low reserve requirements, the transition path is

non-monotonic, and the economy is more likely to experience cyclic and boom-bust

responses following a monetary announcement.

6 Empirical Evaluation

In the previous sections, the theoretical results show that lowering the required re-

serve ratio can induce instability, as endogenous cycles are more likely to emerge with

low reserve requirements. When endogenous cycles exist, lowering the reserve require-

ment increases the amplitude of the cycles. Also, the calibrated example shows that

lowering reserve requirements increases the volatility of transition dynamics as the

economy is more likely to induce cyclic and boom-bust responses from information

(news) shocks. Whether the economic fluctuation occurs from an exogenous shock

or arises endogenously, the fractional reserve system increases the volatility of inside

money real balances

To evaluate the model’s prediction, I examine whether the required reserve ra-

tio is associated with the cyclical volatility of inside money real balances. Following

Jaimovich and Siu (2009) and Carvalho and Gabaix (2013), I measure the cyclical

volatility in quarter t as the standard deviation of filtered log real total checkable de-

posits during a 41-quarter (10-year) rolling window. As in Carvalho and Gabaix (2013),

end periods use uncentered one-sided standard deviation. Total checkable deposits are

from the H.6 Money Stock Measures published by the Federal Reserve Board and con-

verted to real value using the Consumer Price Index (CPI). Seasonally adjusted series
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Figure 17: Scatter Plot for Inside Money Volatility and Required Reserve Ratio

are used to smooth the seasonal fluctuation. I adopt the Hodrick-Prescott (HP) filter

with a 1600 smoothing parameter as standard. To construct an annual series, quarterly

observations are averaged for each year. The sample period is from 1960:I to 2018:IV.

We can also compute the volatility of unsecured credit. The credit data are converted

to real value using the Consumer Price Index (CPI). The sample period of unsecured

credit is from 1968:I to 2018:IV.

To compute the required reserve ratios, I divide the required reserves by the deposit

component of M1 instead of using the official legal reserve requirement. The reason for

this approach is the following. The legal reserve requirement for demand deposits was

10% from April 2, 1992, to March 25, 2020. However, the Federal Reserve imposed

different reserve requirements depending on the size of a bank’s liabilities. For example,

from December 29, 2011, to December 26, 2012, the Fed had a reserve requirement

exemption for liabilities up to $11.5 million. For liabilities between $11.5 million and

$71.0 million, the Fed imposed a 3% reserve requirement. These criteria have changed

over time. On December 27, 2012, the Fed increased the exemption threshold to

$12.4 million and raised the low reserve tranche from $71.0 million to $79.5 million.

During 1992:I-2019:IV, there were 27 changes in these thresholds. Dividing the required

reserves by the deposit component of M1 allows us to track these changes as well.

Figure 17 presents a scatter plot of the cyclical volatility of the real inside money

balance and the required reserve ratio. Columns (1) and (3) of Table 4 reports its

regression estimates with Newey-West standard errors. The plot and estimates show a

negative relationship between the cyclical volatility of the real inside money balance and
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Table 4: Effect of Required Reserve Ratio

Dependent σRoll
z,t σRoll

b,t

variable Yearly Quarterly Yearly Quarterly
OLS CCR OLS CCR OLS CCR OLS CCR
(1) (2) (3) (4) (5) (6) (7) (8)

χ −0.310∗∗∗ −0.380∗∗∗ −0.309∗∗∗ −0.422∗∗∗ 1.103∗∗∗ 0.883∗∗∗ 1.116∗∗∗ 0.791∗∗∗

(0.038) (0.029) (0.019) (0.041) (0.146) (0.015) (0.074) (0.148)
ffr 0.161∗∗∗ 0.255∗∗∗ 0.359∗∗∗ 0.357∗∗∗

(0.028) (0.030) (0.007) (0.134)
Constant 0.074∗∗∗ 0.072∗∗∗ 0.074∗∗∗ 0.073∗∗∗ −0.053∗∗∗ −0.055∗∗∗ −0.053∗∗∗ −0.034∗∗∗

(0.005) (0.003) (0.002) (0.005) (0.012) (0.002) (0.006) (0.016)
Obs. 59 59 236 236 56 56 223 223
adjR2 0.622 0.637 0.622 0.594 0.706 0.587 0.723 0.149
Johansen Tests for Cointegration (No trend)
λmax rank(r = 0) 4.13 29.10 3.85 24.09 6.66 22.27 7.25 24.70
5% CV 11.44 17.89 11.44 17.89 11.44 17.89 11.44 17.89
λmax rank(r = 1) 1.54 6.01 2.30 5.21 3.09 7.83 3.39 6.59
5% CV 3.84 11.44 3.84 11.44 3.84 11.44 3.84 11.44

Note: For (1), (3), (5) and (7), OLS estimates are reported, and Newey-West standard
errors (using a lag order of 1) are reported in parentheses. For (2), (4), (6), and (8), first-
stage long-run variance estimations for CCR are based on the quadratic spectral kernel and
Bayesian information criterion. The bandwidth selection is based on Newey-West fixed lag,
4× (T/100)2/9; χ denotes the required reserve ratio, ffr denotes federal funds rates, σRoll

b,t

denotes the cyclical volatility of real inside money balances, and σRoll
d,t denotes the cyclical

volatility of real unsecured credit. ***, **, and * denotes significance at the 1, 5, and 10
percent levels, respectively.

the required reserve ratio with statistically significant regression coefficients. However,

this result can be driven by a spurious regression. Table 5 provides unit root test results

for the federal funds rate, the required reserve ratio, and the cyclical volatility of inside

money. Both augmented Dickey-Fuller tests and Phillips-Perron tests fail to reject the

null hypotheses of unit roots for these series, whereas they reject the null hypotheses of

unit roots at their first differences. In addition to that, the Johansen cointegration test

in Columns (1) and (3), suggests that there is no cointegration relationship between

two variables. So it is hard to rule out that the results of Columns (1) and (3) are

driven by a spurious regression.

To overcome this issue, I adopt the cointegrating regression with an additional

variable, the federal funds rate. Columns (2) and (4) of Table 4 provide Johansen

cointegration test results for the federal funds rate, the required reserves ratio, and

the cyclical volatility of inside money. The Johansen cointegration test suggests a

cointegration relationship among these three variables, which is consistent with the

theoretical result: The instability depends on the reserve requirement and the interest

rate. With the cointegration relationship, we may not have to worry about a spurious
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Table 5: Unit Root Tests

Phillips-Perron test ADF test

Z(ρ) Z(t) Z(t)

Yearly ffr −7.322 −1.899 −2.615
χ −1.450 −1.067 −1.216
σRoll
d,t −4.050 −1.922 −1.911

σRoll
b,t −3.166 −1.211 −1.330

∆ffr −35.123∗∗∗ −5.580∗∗∗ −6.963∗∗∗

∆χ −38.181∗∗∗ −5.214∗∗∗ −3.960∗∗∗

∆σRoll
d,t −30.677∗∗∗ −4.524∗∗∗ −3.953∗∗∗

∆σRoll
b,t −20.795∗∗∗ −3.948∗∗∗ −4.009∗∗∗

Quarterly ffr −9.416 −2.145 −2.371
χ −1.265 −1.046 −1.039
σRoll
d,t −3.337 −1.901 −2.264

σRoll
b,t −1.949 −0.961 −0.979

∆ffr −167.648∗∗∗ −11.799∗∗∗ −11.256∗∗∗

∆χ −201.808∗∗∗ −13.615∗∗∗ −10.854∗∗∗

∆σRoll
d,t −52.488∗∗∗ −5.276∗∗∗ −6.115∗∗∗

∆σRoll
b,t −94.047∗∗∗ −7.884∗∗∗ −6.634∗∗∗

Note: ffr denotes federal funds rates, χ denotes required reserve ratio, and σRoll
t denotes cyclical

volatility of real inside money balances. All series are demeaned before implementing the unit root
test following to Elliott and Müller (2006) and Harvey, Leybourne and Taylor (2009), because the
magnitude of the initial value can be problematic. Let ***, **, and * denotes significance at the 1, 5,
and 10 percent levels, respectively.

relationship. Columns (2) and (4) of Table 4 report the estimates for the cointegrating

relationship. Because of the potential bias from long-run variance, I estimate a canon-

ical cointegrating regression (CCR). The estimates are statistically significant with a

sizable effect. The cointegration analysis confirms that a lower reserve requirement

is associated with higher volatility of inside money real balances, consistent with the

model’s prediction.

We can also assess the relationship between credit volatility and the required reserve

ratio. Columns (5) and (7) of Table 4 report regression estimates with Newey-West

standard errors. The plot and estimates show a positive relationship between the

cyclical volatility of unsecured credit and the required reserve ratio, with statistically

significant regression coefficients. However, this result could also be driven by a spu-

rious regression. The unit root test results in Table 5 support this concern. Columns

(6) and (8) of Table 4 provide Johansen cointegration test results for the federal funds
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rate, the required reserves ratio, and the cyclical volatility of unsecured credit. The

Johansen cointegration test suggests a cointegration relationship among these three

variables. Columns (6) and (8) of Table 4 report the estimates for the cointegrating re-

lationship, which are statistically significant with a sizable effect. However, the theory

in this paper does not feature rich dynamics of unsecured credit and cannot generate

this observation. Extending the model to incorporate richer credit dynamics that are

consistent with this observation could be another research avenue for the future.

7 Conclusion

The goal of this paper is to examine the (in)stability of fractional reserve banking.

To that end, this paper builds a simple monetary model of fractional reserve banking

that can capture the conditions for (in)stability under different specifications. Lower-

ing the reserve requirement increases the consumption at the steady state. However,

it can induce instability. The baseline model and its extension establish the condi-

tions for endogenous cycles and chaotic dynamics. The model also features stochastic

cycles and self-fulfilling boom and burst under explicit conditions. The model shows

that fractional reserve banking can endanger stability in the sense that equilibrium

is more prone to exhibit cyclic, chaotic, and stochastic dynamics under lower reserve

requirements. This is due to the amplified liquidity premium. This result holds in the

extended model with unsecured credit.

The calibrated exercise suggests that this channel could be another source of eco-

nomic fluctuations. This paper also provides some empirical evidence that is consistent

with the prediction of the model. I test the association between the required reserves

ratio and the real money volatility using cointegrating regression. I find a significant

negative relationship between the two variables. Both theoretical and empirical evi-

dence find a link between the reserve requirement policy and (in)stability.
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Online Appendix

Appendix A Proofs

Proof of Proposition 1. Recall (29)

χi = (1− σ + σχ)αL(zs).

Since L′(·) < 0, we have the following:

∂zs
∂i

=
χ

(1− σ + σχ)αL′(zs)
< 0, and

∂zs
∂χ

=
i− σαL(zs)

(1− σ + σχ)αL′(zs)
< 0.

Since z = v(q) and v′(q) > 0, it is straightforward to show that lowering i or lowering

χ increases q.

Proof of Proposition 2. Let there exists a two-period cycle satisfying z1 < zs <

p∗ ≤ z2. Since z2 ≥ p∗, we have z2 = (1 + i)z1. Using (28) with z1 < p∗ gives

χ =
(1− σ)αL(z1)

(1 + i)2 − 1− σαL(z1)
(56)

This two-period cycle should satisfy z1 < zs < p∗ and z2 = (1 + i)z1 ≥ p∗. The first

one can be easily shown using

0 = L(p∗) < L(zs) =
i

α(1− σ + σχ)
χ <

(1 + i)2 − 1

α(1− σ + σχ)
χ = L(z1)

since we have L′(·) < 0. Because dz1/dχ < 0, the latter one, z1 ≥ p∗/(1 + i), is held

when

0 < χ ≤
(1− σ)αL

(
p∗

1+i

)
(1 + i)2 − 1− σαL

(
p∗

1+i

) .
This equilibrium solves

(1 + i)2 − 1

α(1− σ + σχ)
χ = L(z1), and z2 = (1 + i)z1

We can check if lowering the reserve requirement also increases the volatility. Consider
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the difference between peak and trough z2 − z1 = iz1. Since

∂z1
∂χ

=
α(1− σ)

χ{(1 + i)2 − 1}
{L(z1)}2

L′(z1)
< 0,

reducing the reserve requirement increases the difference between peak and trough.

Proof of the Existence of a Two-period Monetary Cycle where f ′(z) < −1. Let

f 2(z) = f ◦f(z). With given the unique steady state, f(z) > z for z < zs and f(z) < z

for z > zs. Because f(z) is linear increasing function for z > p∗, there exist a z̃ > p∗

s.t f(z̃) > p∗. Since z̃ > p∗ and f(z̃) < z̃, z̃ satisfies f 2(z̃) < f(z̃) < z̃. We can write

slope of f 2(z) as follows.

∂f 2(z)

∂z
= f ′[f(z)]f ′(z) = f ′(z)f ′(z) = [f ′(z)]2

which implies ∂f 2(z)/∂z > 1 when f ′(z) < −1. And it is easy to show ∂f 2(0)/∂z > 0.

With given i > 0 and χ > 0, there exist a (z1, z2), satisfying 0 < z1 < zs < z2 which

are fix points for f 2(z).

Proof of Proposition 3. When DM trade is based on take-it-or-leave-it offer from

buyer to seller with c(q) = q and −qu′′(q)/u′ = η, f ′(q) can be written as

f ′(q) =
1

1 + i

{
1− σ + σχ

χ
α [u′′(q)q + u′(q)− 1] + 1

}
< −1

Using u′′(q)q = −ηu′(q) gives

1− σ + σχ

χ
α [u′(q)(1− η)− 1] + 1 < −(1 + i)

where u′(q) = 1 + iχ
α(1−σ+σχ)

. Substituting u′(q) yields

{
1 +

iχ

α(1− σ + σχ)

}
(1− η)− 1 < − χ(2 + i)

α(1− σ + σχ)
.

Then rearranging terms gives

0 < χ <
αη(1− σ)

η(1− ασ) + (2− η)(1 + i)
.
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Proof of Proposition 4. I divide three period cycles into two cases.

Case 1: Let there exists a three-period cycle satisfying z1 < zs < p∗ ≤ z2 < z3. Since

z2, z3 ≥ p∗, we have z2 = (1+ i)z1, z3 = (1+ i)z2 = (1+ i)2z1. Using (28) with z1 < p∗

gives

χ =
(1− σ)αL(z1)

(1 + i)3 − 1− σαL(z1)
(57)

This three-period cycle should satisfy z1 < zs < p∗ and z2 = (1 + i)z1 ≥ p∗. First one

can be easily shown using

0 = L(p∗) < L(zs) =
i

α(1− σ + σχ)
χ <

(1 + i)3 − 1

α(1− σ + σχ)
χ = L(z1)

since we have L′(·) < 0. Because dz1/dχ < 0, the latter one, z1 ≥ p∗/(1 + i), is held

when

0 < χ ≤
(1− σ)αL

(
p∗

1+i

)
(1 + i)3 − 1− σαL

(
p∗

1+i

) .
Case 2: Let there exists a three-period cycle satisfying z1 < z2 < p∗ ≤ z3. Since

z3 > p∗, we have z3 = z2(1 + i) and (z2, z1) solves (58)-(59).

z1 = f(z2) =

[
1− σ + σχ

χ
αL(z2) + 1

]
z2

1 + i
(58)

z2 = f̃(z1) ≡
[
1− σ + σχ

χ
αL(z1) + 1

]
z1

(1 + i)2
. (59)

These functions satisfies f(x) > x for x < zs, f(x) < x for x > zs, f̃(x) > x for x < z̃

and f̃(x) < x for x > z̃ where z̃ solves z̃ = f̃(z̃). One can easily show z̃ < zs. Therefore

any intersection between z1 = f(z2) and z2 = f̃(z1) satisfies z1 > z2 which contradicts

to our initial conjecture z1 < z2. This implies there is no three-period cycle satisfying

z1 < z2 < p∗ ≤ z3. Therefore we can conclude that a three-period cycle exists when

0 < χ ≤
(1− σ)αL

(
p∗

1+i

)
(1 + i)3 − 1− σαL

(
p∗

1+i

) .
This equilibrium solves

(1 + i)3 − 1

α(1− σ + σχ)
χ = L(z1), z2 = (1 + i)z1, and z3 = (1 + i)z2.

We can check if lowering the reserve requirement also increases the volatility. Con-
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Figure 18: Intersection of f̃(z) and f(z)

sider the difference between peak and trough z3 − z1 = (i2 + 2i)z1. Since

∂z1
∂χ

=
α(1− σ)

χ{(1 + i)3 − 1}
{L(z1)}2

L′(z1)
< 0,

reducing the reserve requirement increases the difference between peak and trough.

The existence of a three-cycle implies the existence of cycles of all orders and chaotic

dynamics by the Sarkovskii theorem (Sharkovskii, 1964) and the Li-Yorke theorem (Li

and Yorke, 1975).

Proof of Corollary 1: Proposition 4 shows that at least one periodic point satisfies

zt < zs < p∗ in 3- period cycles. Two period cycles satisfies z1 < zs < z2 also implies

at least one periodic point satisfies zt < zs < p∗ in 2-period cycles since z1 < zs < p∗.

This result holds for any n-periodic cycles. Let z1 < z2 < ...zn be the periodic points

of a n-cycle. Suppose zj > zs for all j = 1, 2, ..n. By the definition of a n-period cycle,

z1 = f(zn) < zn since f(z) < z for z > zs.

zn = f(zn−1) < zn−1 = f(zn−2) < zn−2... < z1.

which shows the contradiction implying at least one periodic point satisfies zt < zs <

p∗.
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Proof of Proposition 5. By definition, if there exists (ζ1, ζ2) satisfying

z1 = ζ1f(z
1) + (1− ζ1)f(z

2) (60)

z2 = (1− ζ2)f(z
1) + ζ2f(z

2) (61)

with ζ1, ζ2 < 1, then there exists a proper sunspot equilibrium. Because z1 and z2

are weighted averages of f(z1) and f(z2), where f(z1) > z1 and f(z2) < z2, by the

uniqueness of the positive steady state, necessary and sufficient conditions for (60) and

(61) are

f(z2) < z1 < f(z1) and f(z2) < z2 < f(z1).

Since z1 < z2, above conditions are reduce to

z2 < f(z1) and z1 > f(z2). (62)

When χ < χm, there exists (z1, z2) that satisfies (62). Rewrite (60) and (61) as

ζ1 + ζ2 =
z1 − f(z2)− z2 + f(z1)

f(z1)− f(z2)
=

z1 − z2

f(z1)− f(z2)
+ 1 < 1 (63)

since z2 < z1 and f(z1) > f(z2). Therefore, when χ < χm, a stationary sunspot

equilibrium exists.

Now consider the case with f ′(zs) < −1. Since f ′(zs) < 0, there is an interval

[zs − ε1, zs + ε2], which satisfy ε1, ε2 > 0 and f(z1) > f(z2) for z1 ∈ [zs − ε1, zs) and

z2 ∈ (zs, zs + ε2].

z2 − zs
zs − z1

< −f ′(zs) <
zs − z1

z2 − zs

Since f ′(zs) < −1, the above condition can be reduce to −f ′(zs) <
zs−z1

z2−zs
= ε1

ε2
. There

exist multiple solutions, (ε1, ε2), satisfying −f ′(zs)ε2 < ε1 given −f ′(zs) > 1 and

ε1, ε2 > 0. These solutions satisfy (63). Therefore, if f ′(zs) < −1, there exists a

stationary sunspot cycle.

Proof of Proposition 6. Consider zt = f(zt+1). If zs > z̄ where z̄ solves f ′(z̄) = 0.

In this case, there exist multiple equilibria. If q∗ ≤ f(z̄), then there exist equilibria

{zt}∞t=0 with zT ≡ max{zt}∞t=0 > q∗ (bubble) which crashes to 0 (burst) as t → ∞,

55



where T ≥ 1 and zT > z0. Then there exist equilibria with bubble-burst as a self-

fulfilling crisis. Conditions for this case are shown as below. Similar to Corollary 3,

consider take-it-leave-it offer with −qu′′/u′ = η and c(q) = q. Then we have following

difference equation:

zt = f(zt+1)


zt+1

1 + i

{
1− σ + σχ

χ
α [u′(zt+1)− 1] + 1

}
if zt+1 < q∗

zt+1

1 + i
if zt+1 ≥ q∗

(64)

Step 1: [Multiplicity i.e., zs > z̄ where z̄ solves f ′(z̄) = 0] Consider the following

condition.

f ′(z̄) =
1

1 + i

{
α(1− σ + σχ)

χ
[u′(z̄)(1− η)− 1] + 1

}
= 0

Since zs > z̄ → u′(zs) < u′(z̄), we have

u′(zs) = 1 +
iχ

α(1− σ + σχ)
<

1

1− η

{
1− χ

α(1− σ + σχ)

}
= u′(z̄).

This can be reduced as

χ <
αη(1− σ)

1 + i− η(i+ ασ)

Step 2: [Show q∗ ≤ f(z̄)] It is straightforward to show that q∗ < f(z̄) holds when

χ <
(1− σ)αη(1 + i)

(1− η)2q∗ + (1 + i)[(1− η)(3 + i− η)− αση]

Therefore, when

0 < χ < min

{
(1− σ)αη(1 + i)

(1− η)2q∗ + (1 + i)[(1− η)(3 + i− η)− αση]
,

αη(1− σ)

1 + i− η(i+ ασ)

}
there exist {zt}∞t=0 satisfying zT ≡ max{zt}∞t=0 > q∗ and limt→∞ zt = 0, where T ≥ 1

and zT > z0 > q∗/(1 + i).

Proof of Proposition 7. I first present a two period cycle result and three-period

case will follow. Let there exists a two-period cycle satisfying w1 < q∗ < w2 where

wj = zj + b̄j. Since w2 > q∗, we have z2 = (1 + i)z1 and b̄2 = (1 + ρ)b̄1 − σαµS(q∗)
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where q1, b̄1, b̄2, and z1 solve

u′(q1) = 1 + χ
(1 + i)2 − 1

α(1− σ + σχ)

b̄2 = βb̄1 +
χµσz1{1− (1 + i)2}

β(1− σ + σχ)
+ βαµσS(q1)

b̄1 = βb̄2 + βαµσS(q∗)

and z1 = q1 − b̄1. This two-period cycle should satisfy q1 < q∗ and

w2 = (1 + i)z1 + (1 + ρ)b̄1 − σαµS(q∗) > q∗.

For given i > 0 and χ > 0, first one can be easily shown using

1 = u′(q∗) < u′(qs) = 1 +
i

α(1− σ + σχ)
χ < 1 +

(1 + i)2 − 1

α(1− σ + σχ)
χ = u′(q1)

since we have u′′(·) < 0. Now we also can check the latter. Consider (χ̄c, z1, b1, q1)

solving

χ̄c =
(1− σ)α [u′ (q1)− 1]

(1 + i)2 − 1− σα [u′ (q1)− 1]
(65)

(1 + i)z1 + (1 + ρ)b1 − σαµS(q∗) = q∗ (66)

(1 + ρ)b1 − σαµS(q∗) =
σαµ{β2S(q∗) + βS(q1)}+ χ̄cµσz1{1−(1+i)2}

(1−σ+σχ̄c)β

(1− β2)
(67)

and q1 = z1 + b1 given i. In this case, we have both conditions: w2 = z2 + b2 > q∗ and

q1 < qs < q∗. Therefore we can say, there exists a two-period cycle when χ = χ̄c. Since

we have u′′(·) < 0 and S = u(q)− q, one can show that there exist a two-period cycle

when χ is lower than χ̄c, given i.

Now, let there exists a three-period cycle satisfying q1 = w1 < qs < q∗ < w2 < w3

where wj = zj + b̄j. Since w3, w2 > q∗, we have z2 = (1 + i)z1, z3 = (1 + i)2z1,

b̄2 = (1 + ρ)b̄1 − σαµS(q∗) and b̄3 = (1 + ρ)2b̄1 − (2 + ρ)σαµS(q∗) where q1, b̄1, and z1

solve
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u′(q1) = 1 + χ
(1 + i)3 − 1

α(1− σ + σχ)

b̄3 = βb̄1 +
χµσz1{1− (1 + i)3}

β(1− σ + σχ)
+ βαµσS(q1)

b̄1 = βb̄2 + βαµσS(q∗)

b̄2 = βb̄3 + βαµσS(q∗)

and z1 = q1 − b̄1. This three-period cycle should satisfy q1 < qs < q∗ and w2 =

(1 + i)z1 + (1 + ρ)b̄1 − σαµS(q∗) > q∗. For given i > 0 and χ > 0, first one can be

easily shown using

1 = u′(q∗) < u′(qs) = 1 +
i

α(1− σ + σχ)
χ < 1 +

(1 + i)3 − 1

α(1− σ + σχ)
χ = u′(q1)

since we have u′′(·) < 0. Now we also can check the latter. Consider (χ̂c, z1, b1, q1)

solving

χ̂c =
(1− σ)α [u′ (q1)− 1]

(1 + i)3 − 1− σα [u′ (q1)− 1]
(68)

(1 + i)z1 + (1 + ρ)b1 − σαµS(q∗) = q∗ (69)

(1 + ρ)b1 − σαµS(q∗) =
σαµ{(β2 + β3)S(q∗) + βS(q1)}+ χ̂cµσz1{1−(1+i)3}

β(1−σ+σχ̂c)

(1− β3)
(70)

and q1 = z1 + b1 given i. In this case, we have both conditions: w2 = z2 + b2 > q∗

and q1 < qs < q∗. Therefore we can say, there exists a three-period cycle when χ = χ̂c.

Since we have u′′(·) < 0 and S = u(q)− q, one can show that there exist a three-period

cycle when χ is lower than χ̂c, given i.

Since we have u′′(·) < 0 and S = u(q)−q, one can show that there exist a two-period

cycle when χ is lower than χ̄c, given i. Again, the existence of a three-cycle implies

the existence of cycles of all orders and chaotic dynamics by the Sarkovskii theorem

and the Li-Yorke theorem.
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Appendix B Model without banking,

The section document a model without banking à la Gu et al. (2016). Consider an

economy same to Section 4 except there is no FM between CM and DM. The agent

solves the following problem in the CM.

Wt(mt,−bt) = max
Xt,Ht,m̂t+1

U(Xt)−Ht + βVt+1(m̂t+1)

s.t. ϕtm̂t+1 +Xt = Ht + Tt + ϕtmt − bt,
(71)

The DM value function is

V b
t (mt, ) = σα[u(qt)− qt] +Wt(mt, 0),

where qt = min{q∗, b̄t + ϕtmt}. Given b̄t, solving equilibrium yields

zt =


zt+1

1 + i

{
σα

[
u′(zt+1 + b̄t+1)− 1

]
+ 1

}
if zt+1 + b̄t+1 < q∗

zt+1

1 + i
if zt+1 + b̄t+1 ≥ q∗,

(72)

where zt+1 = ϕt+1Mt+1. Now we endogenize the debt limit. The buyer cannot commit

to pay back the debt. If the buyer reneges she is captured with probability µ. The

punishment for a defaulter is permanent exclusion from the DM trade but she can still

produce for herself in the CM. The value of autarky is W(0, 0, 0, 0) = [U(X∗)−X∗ +

T ]/(1− β). The incentive condition for voluntary repayment is

−bt +Wt(mt, 0)︸ ︷︷ ︸
value of honoring debts

≥ (1− µ)Wt(mt, 0) + µW(mt, 0)︸ ︷︷ ︸
value of not honoring debts

.

One can write the debt limit b̄t as bt ≤ b̄t ≡ µWt(0, 0) − µW(0, 0). Recall the CM

value function. Using the solution of FM, we can rewrite the buyer’s CM value function

as

Wt(0, 0, 0, 0) = U(X∗)−X∗ + Tt + βWt+1(0, 0, 0, 0)

+ max
m̂t+1

{−ϕtm̂t+1 + βσα[u(qt+1)− qt+1] + βϕt+1m̂t+1},

where qt+1 = min{q∗, zt+1 + b̄t+1}. Substituting Wt(0, 0, 0, 0) = b̄t/µ+W(0, 0, 0, 0) and
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m̂t+1 = Mt+1 yields

b̄t
µ

= −ϕtMt+1 + βασ[u(zt+1 + b̄t+1)− zt+1 − b̄t+1] +
βb̄t+1

µ
+ βϕt+1Mt+1,

where Mt+1 and zt+1 solve (72). Rearranging terms yields

b̄t = βb̄t+1 + µ{−γzt + βzt+1}+ βσαµS(zt+1 + b̄t+1) (73)

where S(·) is the buyer’s trade surplus and defined as

S(zt+1 + b̄t+1) ≡

{
u(zt+1 + b̄t+1)− zt+1 − b̄t+1 if zt+1 + b̄t+1 < q∗

u(q∗)− q∗ if zt+1 + b̄t+1 ≥ q∗.

The equilibrium can be collapsed into a dynamic system satisfying (72)-(73).

Stationary Equilibrium In the stationary equilibrium, (72) becomes

− i

σα
+ u′(q)− 1 ≤ 0,= if z > 0 (74)

and (73) becomes

(1− β)b̄ =

{
µ{−γ + β}z + βσαµ[u(z + b̄)− z − b̄] if z + b̄ < q∗

µ{−γ + β}z + βσαµ[u(q∗)− q∗] if z + b̄ ≥ q∗,
(75)

where q = min{z + b̄, q∗}.
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